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Abstract—A family of equivalence tools for bounding network
capacities is introduced. Given a network with node set , the
capacity of is a set of non-negative vectors with elements corre-
sponding to all possible multicast connections in ; a vector is
in the capacity region for if and only if it is possible to simulta-
neously and reliably establish all multicast connections across at
the given rates. Any other demand type with independent messages
is a special case of this multiple multicast problem, and is there-
fore included in the given rate region. In Part I, we show that the
capacity of a network is unchanged if any independent, mem-
oryless, point-to-point channel in is replaced by a noiseless bit
pipe with throughput equal to the removed channel’s capacity. It
follows that the capacity of a network comprised entirely of such
point-to-point channels equals the capacity of an error-free net-
work that replaces each channel by a noiseless bit pipe of the cor-
responding capacity. A related separation result was known pre-
viously for a single multicast connection over an acyclic network
of independent, memoryless, point-to-point channels; our result
treats general connections (e.g., a collection of simultaneous uni-
casts) and allows cyclic or acyclic networks.

Index Terms—Capacity, component models, equivalence, net-
work coding.

I. INTRODUCTION

T HE STUDY of network communications has two natural
facets reflecting different approaches to thinking about

networks. On the one hand, networks are considered in the
graph theoretic setup consisting of nodes connected by links.
The links are typically not noisy channels, but rather noise-free
bit pipes that can be used error free up to a certain capacity. Typ-
ical questions concern information flows and routing strategies.
On the other hand, multiterminal information theory addresses
information transmission through networks by studying noisy
channels, or rather the stochastic relationship between input
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and output signals at devices in a network. Here, the questions
typically concern fundamental limits of communication. The
capacity regions of broadcast, multiple-access, and interference
channels are all examples of questions that are addressed in the
context of multiterminal information theory. These questions
appear to have no obvious equivalents in networks consisting
of error-free bit pipes. Nevertheless, these two views of net-
working are two natural facets of the same problem, namely
communication through networks. This work explores the
relationship between these two worlds.

Establishing viable bridges between these two areas proves
to be surprisingly fertile. For example, questions about feed-
back in multiterminal systems are quite nicely expressed in
terms of networks of error-free bit pipes. Separation issues—in
particular, separation between network coding and channel
coding—have natural answers, revealing many network ca-
pacity problems as combinatorial rather than statistical, even
when communication occurs across networks of noisy chan-
nels. Most importantly, bounding general network capacities
reduces to solving a central network coding problem described
as follows. Given a network of error-free, rate-constrained bit
pipes, is a given set of connections (e.g., a collection of mul-
ticast connections) simultaneously feasible or not. In certain
situations, most notably under a single multicast connection,
this question has been solved, and the answer is easily charac-
terized [1]. Unfortunately, the general case is wide open, and
is suspected to be hard. (Currently, NP hardness is established
only for scalar linear network coding [2].) While it appears that
fully characterizing the combinatorial network coding problem
is out of reach [3], networks of moderate size can be solved
quite efficiently, and there are algorithms available that treat
precisely this problem with running time that is exponential in
the number of nodes [4]–[6]. The observation that, in principle,
it is possible to characterize the rate region of a network coding
problem will be a cornerstone for our investigations.

The combinatorial nature of the network coding problem cre-
ates a situation not unlike that found in complexity theory. In
that case, since precise expressions as to how difficult a problem
is in absolute terms are difficult to derive, research is devoted
instead to showing that one problem is essentially as difficult
as another one (even though precise characterizations are not
available for either). Inspired by this analogy, we take a sim-
ilar approach here, demonstrating the relationship between the
capacity of a stochastic network and the capacity of a network
of noiseless bit pipes, without characterizing the capacity of ei-
ther network. In fact, this relationship is all we need if we want
to address separation issues in networks. It also opens the door
to other questions, such as degree-of-freedom or high-signal-to-
noise-ratio analyses, which reveal interesting insights.
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It is interesting to note the variety of new tools generated in
recent years for studying network capacities (e.g., [1], [3]–[5],
[7]–[12]). The reduction of a network information theoretic
question to its combinatorial essence is also at the heart of some
of these publications (see, e.g., [12]). Our present work is very
different in both technique and results. Our goal is not to derive
network capacity regions, but rather to develop equivalence
relationships between the capacity regions of distinct networks.
In other words, we wish to show that any collection of con-
nections is feasible on one network if and only if it is feasible
on another. Since the solution of general network capacities
is out of reach, we prove such equivalences without deriving
the capacity of either network. While this approach is different
from that of other authors, we believe it to be no coincidence
that the reduction of a problem to its combinatorial essence
plays a central role in a variety of techniques for studying
network capacities.

II. MOTIVATION AND SUMMARY OF RESULTS

Traditionally, the information-theoretic investigation of net-
work capacities has proceeded largely by studying example net-
works. Shannon’s original proof of the capacity of a network
described by a single point-to-point channel [13] was followed
by Ahlswede’s [14] and Liao’s [15] capacity derivations for a
single multiple-access channel, Cover’s early work on a single
broadcast channel [16], and so on. While the solution to one net-
work capacity problem may lend insight into future problems,
deriving the capacities of new networks is often difficult. As a
result, even the capacities for three-node networks remain in-
completely solved.

For most large networks, direct derivation of network capac-
ities is out of reach. We therefore seek to divide the network ca-
pacity problem into subproblems whose solutions lend insight
into the problem at hand. Given a network of independent chan-
nels,1 we seek a simple characterization of each channel’s be-
havior that captures that channel’s impact on the broader net-
work. The channel capacity is an obvious candidate characteri-
zation. Note, however, that channel capacity captures the rate at
which we can reliably communicate across a channel, and reli-
able communication across a network does not require reliable
communication across all channels in that network. In fact, op-
erating each channel at its respective capacity often fails to yield
the optimal communication performance across the network as
a whole. As a result, channel capacity is not necessarily a rele-
vant characterization of a channel’s impact on a larger network.

The following examples illustrate this point. Each establishes
a single unicast connection across a network of independent
channels. In Example 1, operating point-to-point channels at
twice their respective capacities gives a factor of two improve-
ment in the network’s error exponent. In Examples 2 and 3, op-
erating a broadcast channel above its capacity increases the rate
that can be reliably delivered through the network.

Example 1: Consider the problem of establishing a
unicast connection over the two-node network shown
in Fig. 1(a). Node 1 transmits a pair of channel inputs

1We say that a network’s component channels are independent when the in-
puts to the channels are distinct and the noise random processes in the channels
are independent; a formal definition follows in Section III.

. Node 2 receives a pair of channel
outputs . The inputs and outputs are
stochastically related through a pair of independent but iden-
tical channels; i.e.,

for all , while

when . Let

be the capacity of each channel. For each rate and each
blocklength , we compare two strategies for reliably communi-
cating from node 1 to node 2 at rate . The first (see Fig. 1(b))
reliably communicates over each link using an optimal
channel code. The second (see Fig. 1(c)) applies a single optimal

channel code across the pair of channels, sending
the first symbols of a codeword across the first channel and
the remaining symbols across the second channel, and jointly
decoding the channel outputs using its blocklength- channel
decoder. Using this approach, each channel may have as many
as possible inputs. Thus when is close to , this code
operates each channel at up to twice its capacity, making reliable
transmission across each individual channel impossible. Since
the first strategy operates an -dimensional code over time
steps while the second strategy operates a -dimensional code
over time steps, the error probability of the second strategy
decays to zero far more quickly than that of the first code. The
difference is a factor of two in the error exponent.

In Example 1, the penalty for operating a pair of point-to-
point channels at their individual capacities is a factor of two
in the error exponent. This does not, however, imply that op-
erating channels at their individual capacities fails to achieve
the network capacity. In fact, [7] and [17] prove that separa-
tion holds for single-source multicast connections across acyclic
networks of independent, memoryless point-to-point channels.
To prove the result, the authors show that separate network and
channel codes achieve the cut-set outer bound on the multicast
capacity. Unfortunately, this result is difficult to extend. First,
cut-set bounds on the network capacity are not tight in general,
and finding good outer bounds and then proving their achiev-
ability for all possible connection types on all possible networks
is not feasible. Further, if we consider more general network
types, then separation between network and channel coding fails
even for a single unicast connection, as shown in Example 2.

Example 2: Fig. 2(a) shows a four-node network built from
a Gaussian broadcast channel followed by a real additive mul-
tiple-access channel. The two channels are independent; i.e.,
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Fig. 1. Example 1 compares separate network and channel coding to joint
network and channel coding across the network shown in (a). The separated
strategy employs the pair of channel codes shown in (b); each is used
to reliably transmit bits over uses of a single channel. The joint coding
strategy employs the single channel code shown in (c); this code
is used to reliably transmit information across uses of the pair of channels.
The joint coding strategy achieves twice the error exponent by operating each
channel at roughly twice its capacity.

The broadcast channel has power constraint
and channel outputs and

. Here, and are statistically dependent mean-0,
variance- random variables with , and and
are positive, real-valued constants. The multiple-access channel
has power constraints at
each transmitter and output . We consider
a single unicast connection, where node 1 wishes to reliably
transmit information to node 4. If we channel code to make each
channel reliable and then apply network coding, the achievable
rate cannot exceed the broadcast channel’s maximal sum rate

The network’s unicast capacity is infinite since nodes 2 and 3
can simply retransmit their channel outputs uncoded to give
output at
node 4.

Example 2 shows that the gap between the capacity of a
network and the maximal rate achievable on that network using
separate network and channel codes can be very large. It is
tempting to believe that the observed gap results from the
example’s unusual noise characteristics and therefore to hope
that the penalty for separate network and channel coding might
still be small for real networks since such statistics are unlikely
to occur. Unfortunately, the penalty for separate network and
channel coding is sometimes high even for networks with
independent noise at all receivers, as shown in Example 3.

Example 3: Fig. 2(b) shows an -node network
constructed from a Gaussian broadcast channel and a real
additive multiple-access channel. The broadcast channel
has power constraint and channel outputs

, , where are inde-
pendent, mean-0, variance- Gaussian random variables, and

and are real-valued positive constants. The multiple-access

Fig. 2. Separate network and channel coding fails to achieve the unicast ca-
pacity of (a) a four-node network with dependent noise at the receivers of the
broadcast channel and (b) an -node network with independent noise at
the receivers of the broadcast channel.

channel has power constraint at each trans-
mitter and output .
We wish to establish a single unicast connection from node 1
to node . The maximal unicast rate using separate net-
work and channel codes is bounded by the broadcast channel’s
maximal sum rate

the maximization is taken over all with
for all and . The unicast capacity of the network
is at least

since nodes 2 through can simply retransmit their channel
outputs uncoded to give output

which is a Gaussian channel with power
and noise variance .

Examples 2 and 3 show that the capacity of a channel can
vastly underestimate the rate at which that channel can operate
in a larger network. In a channel with multiple receivers, this
phenomenon arises since the channel capacity requires each
receiver to decode reliably using only its received channel
output; in a larger network, nodes that receive evidence about
the channel outputs at multiple receivers may be able to reliably
decode at a higher rate. In a channel with multiple transmitters,
the capacity requires each transmitter to send an independent
transmission; in a larger network, it may be possible to establish
dependence at the channel inputs and deliver a higher rate.
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Fig. 3. Networks and are identical except that replaces channel
by channel .

The preceding examples also suggest that a channel’s optimal
behavior can vary enormously depending on the network in
which that channel is employed. To capture the full range of be-
haviors, we introduce the concept of upper and lower bounding
channel models, which is roughly as follows. Consider a pair of
channels and . Let be an arbitrary network containing
independent channel , and let be another network that
is identical to except that it replaces independent channel

by independent channel . (See Fig. 3 for an illustration;
formal definitions follow in Section III.) If the capacity of
is a subset of that for for all possible and , then is
a lower bounding model for (or, equivalently, is an upper
bounding model for ). When is both an upper and a lower
bounding model for , we say that and are equivalent.

By the given definition, proving that is a lower bounding
model for requires demonstrating that any connections that
can be supported on any network containing can still be sup-
ported if we replace by . This is challenging both because
the bounds must apply for all networks containing the channel
and because they must apply to all combinations of connections
across each network.

Since sequentially considering all possible networks and all
possible connections is infeasible, we propose an alternative
strategy for proving bounding relationships between channels.
We prove that channel is an upper bounding model for
channel by proving that channel can emulate channel

to sufficient accuracy that any code that can be operated
across a network containing can be operated with similar
error probability across the network that replaces with

. This proves that any rate that is achievable on is also
achievable on , which demonstrates the desired relationship.

Our aim in deriving bounding channel models is to simplify
the calculation of capacities. We therefore focus on upper and
lower bounding models comprised of noiseless bit pipes. For
example, we seek to upper bound an arbitrary point-to-point
channel by a bit pipe of the smallest possible capacity. The value
of such a result is that it allows us to find new bounds on capaci-
ties of networks of noisy point-to-point channels in terms of the

network coding capacities of networks of noiseless bit pipes.
While the latter problem is not solved in general, a variety of
computational tools for bounding these capacities are available.
(See, for example, [4]–[6].) This work enables the application
of these tools to find capacities for networks of noisy channels.

Section III describes the problem setup. Section IV intro-
duces stacked networks and relates their capacities to standard
network capacities. Section V summarizes the main results
of Part I, which include identical upper and lower bounding
models for point-to-point channels that together prove the
equivalence between a point-to-point channel and a noiseless
bit pipe of the same capacity. Section VI contains the central
proofs. Section VII gives a summary and conclusions for Part I.
Part II generalizes the results to derive error-free models for
multiterminal channels. These tools are useful for the develop-
ment of computational tools for bounding network capacities.

III. THE SETUP

Our notation is similar to that of Cover and Thomas [18,
Sec. 15.10]. Network has nodes, described by vertex set

. Each node transmits an input random variable
and receives an output random variable

at each time step. The alphabets and may be dis-
crete or continuous and scalar or vector. For example, if node
transmits information over Gaussian channels, then

. We use and to
denote the collections of all network inputs and outputs. At time
, node transmits and receives ; and denote

the full vectors of time- transmissions and receptions, respec-
tively. By assumption, the network is memoryless and time-in-
variant, and its behavior is characterized by a conditional prob-
ability distribution.2 Thus

for all , and any network is defined by its corresponding
triple

and the causality constraint that is a function only of past
network outputs at node and the node’s out-
going messages, defined next.

For any and , let be the single-
source multicast capacity from to in . Let

denote the set of all possible multicast connections across net-
work . A code of blocklength operates the network over
time steps with the goal of communicating, for each

, message

2The last assumption is restrictive only for channels with continuous output
alphabets, where it implies that we consider only channels for which the condi-
tional probability density function exists.
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from source node to all of the sink nodes . The messages
are independent and uniformly

distributed by assumption.3 We use
to denote the vector of messages transmitted from node and

to denote the vector of all messages; i.e.,

The constant is called the multicast rate from to ,
and the at most -dimensional vector of multicast rates4

is denoted by .

Definition 1: Let a network

be given. A blocklength- solution to is a set of en-
coding functions

mapping to for each
and and a set of decoding functions

mapping to for each
with and . We use

as notational shorthand for the event that one or more mes-
sages is decoded in error at one or more of its intended re-
ceivers (i.e., if and only if
for some with and ). The solu-
tion is called a -solution, denoted - ,
if for all and

using the specified encoding and decoding
functions.

Definition 2: The capacity of a network is the clo-
sure of all rate vectors such that for any and all
sufficiently large, there exists a - solution of block-
length . We use to denote the interior of the ca-
pacity region .

Remark 1: The given definitions are sufficiently general to
model a wide variety of memoryless networks, including the
usual models for isolated memoryless point-to-point, broadcast,
multiple-access, and interference channels. Using vector alpha-
bets makes it possible to model MIMO channels and other sys-
tems where a single node transmits multiple network inputs or
receives multiple channel outputs. Including a “no transmis-
sion” symbol, here denoted by , is useful both for handling

3The proof also goes through if the same message is available at more than
one node in the network.

4The dimension of is really at most since a multicast with
receiver set has no meaning.

transmitters that receive no channel outputs and receivers that
transmit no channel inputs (in which case is the only symbol in
the corresponding alphabet) and for accommodating problems
where it is important to be able to embed a node’s transmissions
in a schedule that may or may not depend on the messages to be
sent and the symbols that were received in the network (in which
case is part of a larger alphabet). In all cases we assume that
at each time , random variables and are given.

We say that network

contains independent channel

if ,

if
if ,

if
if

and

for all and , where

The channel

captures the stochastic behavior of the remainder of the network.
We therefore describe the network as

Remark 2: As noted above, we set when node
transmits no network inputs and when node

receives no network outputs. The same convention applies in
channels. Where notationally convenient, we drop random vari-
ables with alphabet from our channel and network defini-
tions. For example, a binary, memoryless point-to-point channel
is defined either as

with , , and
or, equiva-

lently, as

with .
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Fig. 4. The 3-fold stacked network for the network in Fig. 1(a).

Definition 3: Let a pair of channels

be given, where ,
. We say that channel is a lower

bounding model for channel , written

if for all channels ; that is, the
capacity region of a network that contains independent channel

is never diminished if we replace by independent channel
. We say that channel is an upper bounding model for ,

written

if is a lower bounding model for (i.e., ). We say
that channels and are equivalent, written

if is both a lower bounding model and an upper bounding
model for (i.e., and ).

IV. STACKED NETWORKS AND STACKED SOLUTIONS

As noted briefly in Section II, our strategy for showing that a
channel is an upper bounding model for another channel
is to show that can emulate to sufficient accuracy that any
code built for a network can be run across network

with similar error probability. In the arguments
that follow in Section V, we first fix a solution on
and then build a code to emulate the typical behavior of channel

under this solution. Since may employ memory and
establish different distributions across channel at different
times, the channel input and output are not necessarily indepen-
dent and identically distributed (i.i.d.) across time. As a result,
this work applies typicality and emulation arguments not across
time but instead across a stack of parallel instances of the net-
work, as shown in Fig. 4.

We introduce the resulting “stacked network” and its solu-
tions below. As we show later in this section, a network and its
corresponding stacked network have the same capacities. Fur-
ther, we show that any solution that can be operated on a stacked

network can also be operated on the original network with the
same error probability and rate. Finally, the stacked network
simplifies later arguments because it establishes the i.i.d. struc-
ture used in the emulation arguments employed in Section V.
It also avoids the decoding delays associated with block coding
across time, which are troublesome both in networks with cy-
cles and in networks with synchronized transmissions.

Given a network

on vertex set and an integer , the -fold
stacked network contains copies of . Thus, has
nodes described by the multiset that contains copies of
each .5 We visualize as a stack with layers, each
of which contains one copy of each vertex . The number
of layers ( ) in a stacked network is specified by context;
in later typicality and coding arguments, is allowed to grow
without bound.

We carry over notation from network to stacked network
by underlining the variable names. Argument designates the

variables in layer of the stack. Thus for each , the copy
of node in layer transmits an input and receives an
output in each time step; the vectors of inputs and out-
puts over the layers of the stack are

and , and
their alphabets are and .
Random variables and

describe the transmitted and received values for all
vertices. The conditional distribution on all outputs from the
stacked network given all inputs to the stacked network is given
by

where and
are the stacked network inputs and outputs in layer .

The causality constraint on node operations restricts the stacked
network input to be a function only of past stacked network
outputs and the messages from the copies of

, as defined below.
A code of blocklength operates the stacked network

over time steps with the goal of communicating, for each
, an independent and uniformly distributed mes-

sage in each layer . Let

designate the messages from to , all messages
from , and the corresponding alphabets. When

5A multiset is a generalization of a set that allows multiple copies of the same
element. The distinction between the set used to describe the vertices of
and the multiset required to describe the vertices of implies that a stacked
network is not a network, and therefore new definitions are required.
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Fig. 5. The operation of in . The illustration shows the time- stacked
network outputs and inputs at the copies of node in ; input is
a function only of prior outputs and outgoing messages

.

in ,
in . We therefore define the

rate for -fold stacked network as
; this definition makes the rates in

and consistent.
While both the transmitted messages and the conditional dis-

tribution are independent across the layers of the stack,
the following definition of a network solution allows both the
node encoders and the node decoders for all copies of a node
to work together across the layers. Fig. 5, which shows the op-
eration of a stacked network’s encoders for some , high-
lights this potential collaboration using vertical lines to connect
all copies of node . The solution definition also specifies the
error criterion for coding: a solution is successful only if every
node succeeds in decoding all of its incoming messages. This
becomes difficult as the number of layers (and thus the number
of nodes and messages) grows without bound.

Definition 4: Let a network

be given. Let be the -fold stacked network for . A block-
length- solution to stacked network is a set of en-
coding and decoding functions

mapping to for
each and and mapping

to for each
with and . We use to

designate the event that one or more messages is decoded in
error at one or more of its intended receivers (i.e.,

if and only if for some
with and ). The solution is
called a -solution for , denoted - , if

for all and
using the specified encoding and decoding

functions.

Definition 5: The capacity of stacked
networks is the closure of all rate vectors such that a

- solution exists for any and all suffi-
ciently large.

Lemma 1: For any network , .
Proof:

: Let . Then for any
and any , there exists a - solution

for network .6 Running independently in each layer of
-fold stacked network yields a rate- solution for
. The error probability for is less than or equal to by

the union bound. Thus , and the result follows from
the closure in the definition of .

: Let . Then for
any and some sufficiently large, there ex-
ists a - solution to -fold stacked network

. Let be the blocklength of . We use
to build a blocklength- - solution for

. Fig. 6 shows how this is done using the solution
from Fig. 5. Roughly, breaks each message

into sub-messages

and runs on these sub-messages as if they were the
messages in the layers of stacked network . The network
inputs transmitted at time by the copies of node in are
transmitted at times by the single copy
of node in . This gives the desired result since the error
probabilities and rates of on and on are
equal. We think of this approach as “unraveling” the solution
for a stacked network across time.

Formally, for each , let

be the natural one-to-one mapping from a single sequence of
bits to consecutive subsequences each of

bits. Let be the inverse of .
We use to map messages from the message alphabet
of the rate- , blocklength- code to the message
alphabet for the rate- , blocklength- code for -fold
stacked network . The mapping is one-to-one since in each
scenario the total number of bits transmitted from node

6By the definition of capacity, for any , we can find a
rate- network solution with arbitrarily small error probability. Since the ca-
pacity definition employs a closure, there is no such guarantee for

.
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Fig. 6. A blocklength- solution for network can be operated over time steps in with the same error probability and rate. The illustration shows
this operation for the solution for from Fig. 5. Each single node in performs the operations of all copies of in and transmits the resulting
network inputs over time steps. Vectors and in play the roles of vectors and in .

to the nodes in is .7 For each , let

. For each , let

denote the network inputs and outputs at node for consec-
utive time steps beginning at time . We define the
solution as

Solution satisfies the causality constraints and performs
precisely the same mappings as . In addition, the condi-
tional distribition on network outputs given network inputs for

consecutive transmissions on network equals the condi-
tional distribution on the -dimensional vector of time- out-
puts given the -dimensional vector of time- inputs for -fold
stacked network . Thus, the solution achieves the same
rate and error probability on as achieves on .

7We here neglect rounding issues, which are asymptotically negligible. When
is not an integer, the given strategy yields a solution of rate

, which approaches
as grows without bound.

The preceding theorem shows not only that and
are equal, but also that any point in can be

achieved using the same single-layer solution independently in
each layer of the stack. Such a solution is attractive because
it establishes, for each time , an i.i.d. distribution on the
network inputs and outputs in the layers of the stack (i.e.,

are i.i.d. for each time
). Unfortunately, this i.i.d. structure is not sufficient for the typ-

icality arguments that follow. The problem is that the solution
used to build a solution in the proof of Lemma 1

varies both with the number of layers and the desired error
probability . Thus we cannot let grow without bound for a
fixed distribution on .

Stacked solutions, illustrated in Fig. 7 and defined formally
below, are structured solutions for stacked networks that are
designed to achieve capacity while establishing the desired
i.i.d. structure on network inputs and outputs across the layers
of the stack. Like the codes used in the proof of Lemma 1,
stacked solutions use the same solution in each layer of
the stack. The difference is that they do not allow to vary
with and ; instead, they fix and use channel coding
to make the code reliable. For each a channel
code maps
to for
some . The network then delivers

by running rate- solu-
tion independently in each layer of the stack. For each

with and , the channel decoder for
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Fig. 7. A stacked solution first channel codes each message and then applies the same solution independently in each layer of the stack. Solution
operates at a rate exceeding the rate of solution . The only collaboration between the copies of node is in the channel coding operation; we

highlight this fact by omitting the vertical lines that previously connected those nodes.

at maps the reproduction of codeword

to reconstruction of .

Definition 6: Let a network

be given. Let be the -fold stacked network for . A block-
length- stacked solution to network is defined by
channel codes

for each and and a single-layer solution
with node encoders and decoders

The stacked solution channel codes each message as

and then applies independently in each layer of the stack
to give

The channel decoders reconstruct the messages as

The solution is called a stacked -solution, de-
noted - , if
for all and the specified mappings imply

.

Theorem 2: Given any , there exists a
sequence of blocklength- - stacked solutions
for some fixed and and all sufficiently large.

Proof: Given any target rate , fix some
for which for all
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. We begin by choosing the rate- solution
to be used in each layer of the stack. Set

For any , let be
the binary entropy function. For reasons that will become clear
later, we next find constants and satisfying

such that there exists a - solution of block-
length . This is possible because implies
that for any and all sufficiently large there
exists a blocklength- - solution. Thus, we
meet the desired constraint by choosing to be small (e.g.,

) and then choosing suffi-
ciently large; the chosen will be the blocklength of code

for all .
Fix a - solution of blocklength , denoting the

solution’s node encoders and decoders by

where and
.

If we apply independently in each layer of stacked net-
work , then for each and each receiver
the layers of the stack behave like independent uses of a
channel

where

is the probability that solution reconstructs transmitted

message as at node . We therefore design,
for each , a channel code with
encoder

and decoders

The channel code’s codewords

are chosen independently and uniformly at random from
. For each ,

channel decoder is the maximum

likelihood decoder for discrete memoryless channel
. The mutual information for

this channel is

for each , where follows since is uni-
formly distributed on , and follows from Fano’s
inequality. The desired rate per channel use is ,
which must be reliably decoded by all receivers in . This rate
is strictly less than the mutual information to each receiver
since

owing to our earlier choice of and . The strong coding the-
orem for discrete memoryless channels bounds the expected
error probability of each randomly drawn code at each of its
decoders as

for some constant and all sufficiently large [19, Th.
5.6.2]. Since , the number of channel decoders is at
most

Therefore, for any , the union bound gives

for all sufficiently large. This is the expected error proba-
bility with respect to the given distribution over the collection
of channel codes for all messages. There must exist a single in-
stance of the channel codes that does at least as well, giving a

- solution for each such .

The random code design used in the proof of Theorem 2
chooses a collection of channel codewords uniformly and
independently at random and then independently describes
each layer of the channel coded messages using the same
single-layer solution . Given this construction, it is
not surprising that the resulting network inputs and outputs

for each time are i.i.d.
Lemma 7 in Appendix I gives the formal proof.
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Fig. 8. (a) An -node network containing a channel from node 1 to node 2. The distribution on the
remaining channel outputs given the remaining channel inputs is arbitrary. (b) The corresponding network that replaces channel by a capacity- noiseless
bit pipe .

V. POINT-TO-POINT CHANNELS

As described in Section III, a pair of lower and upper
bounding models for some channel bounds the range of that
channel’s behaviors in all networks in which the channel can
appear. If is a point-to-point channel, then these networks
take the form shown in Fig. 8(a). Here, contains
independent point-to-point channel

from node 1 to node 2 and an arbitrary channel

8Node indices are arbitrary. In particular, there is no assumption about a par-
tial ordering on vertices, so there is no loss of generality in assuming that the
point-to-point channel has transmitter node 1 and receiver node 2.

9The implicit assumption of the existence of such a probability distribution is
restrictive for continuous-alphabet channels; when is continuous, we assume
that its capacity can be achieved (to arbitrary accuracy) by an input distribu-
tion that has a probability density function. This includes most of the continuous
channels studied in the literature.

describing the stochastic behavior of the rest of the network.8
Let be the capacity of channel , and let be an input
distribution to channel that achieves the channel’s capacity.9

To bound the behavior of point-to-point channel , we inves-
tigate the implications of replacing that channel by a distinct
independent channel

giving network . Channel is a lower bounding
model for ( in the notation of Definition 3) if the ex-
istence of a - solution implies the existence of a

- solution, where can be made arbitrarily small if
can. Channel is an upper bounding model for ( in

the notation of Definition 3) if the existence of a -
solution implies the existence of a - solution, where

can be made arbitrarily small if can. Channel is equivalent
to channel ( in the notation of Definition 3) if both state-
ments hold. We intend to show that any channel of capacity

is a lower bounding model for , and any channel of
capacity is an upper bounding model for . We first treat
the case where is a noiseless bit pipe, as shown in Fig. 8(b).

For any , a noiseless bit pipe of capacity is
a channel that delivers bits per channel use from a single
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transmitter to a single receiver error free. In order to specify both
error-free information delivery and the units (bits) by which we
quantify information, we denote the channel by

We employ this notation whether or not is an integer.
While noninteger capacities are in no way exceptional for

noisy channels, their use in noise-free models is less common
in the literature. While thinking of information in integer units
of bits per channel use (or integer multiples of bits
per channel use in a channel carrying symbols from alphabet

) gives us tools for reasoning about network capacities, it
is important to remember that even with integer capacities, bit
pipes are a purely theoretical construct. Real-world information
flow arguably has no more natural quanta than does space or
time.

We define noiseless bit pipe of capacity to be a mech-
anism that delivers bits over each block of channel
uses; the mechanism is error free and can be operated at any in-
teger . Surprisingly, the precise schedule of information
delivery over the channel uses is of little consequence even
in networks with cycles. The capacity of a network
is unchanged whether bit pipe delivers its bits evenly
over time or entirely in step .10 Theorem 3 proves the equiv-
alence of a point-to-point channel and a noiseless bit pipe of
the same capacity.

Theorem 3: Let a point-to-point channel

of capacity be given,
and let

be a noiseless bit pipe of the same capacity. Then

Proof: Fix an arbitrary channel . Let and
. The proof is accomplished in three steps.

Each step appears as an intermediate result, formally stated and
proved in Section VI.

Lemma 4 proves that is continuous in for
Roughly, this involves showing that a solution for -fold
stacked network can be run across -fold stacked net-
work provided ; the rate for the
latter code approaches that of the former code as approaches
0 and the number of layers in both stacks grows without bound.

Lemma 5 proves that for all .
The proof uses a channel code to make noisy channel em-
ulate noiseless bit pipe in a stacked network; using this

10This observation follows from the unraveling argument in the proof of
Lemma 1. That proof shows that for any and any , we
can build a - solution by unraveling a - solution for

-fold stacked network ; such a solution is guaranteed to exist for all
sufficiently large. Using this approach, none of the network outputs from time
steps are required until time , and thus the
precise schedule of their arrival over that period has no impact on the channel
capacity.

emulator, a solution for network can be run on network
with similar error probability. It follows from Lemma 5

that . The closure of
equals by the continuity of in . This implies

by the closure in the definition of .
Theorem 6 proves that for all .

The proof employs channel emulation to make a noiseless bit
pipe with emulate channel in a stacked net-
work; using this emulator, a solution for network can be
run on with similar error probability.11 Theorem 6 implies

. The desired result then follows from
the continuity of in .

Theorem 3 has a number of interesting implications. Se-
quentially applying the result to each channel in a network of
point-to-point channels proves that the capacity of a network of
independent, memoryless, point-to-point channels equals the
capacity of another network in which each channel is replaced
by a bit pipe of the same capacity. Thus Shannon’s channel
coding theorem tells us everything that we need to know about
the noise in independent, point-to-point channels. What remains
is a purely combinatorial question about how much information
can be reliably delivered in networks of noiseless bit pipes.

Theorem 3 further demonstrates that there is no loss in ca-
pacity associated with first independently channel coding on
every point-to-point channel and then network coding across the
resulting asymptotically lossless links. This separation result is
useful for practical code design since it allows us to leverage the
rich literature on channel code design and the more recent liter-
ature on network code design to build good codes for networks
of noisy point-to-point channels. The mechanism for operating
such separated channel and network codes is the one achieved
by unraveling a stacked solution as described in Lemma 1; ap-
plying the argument in the more obvious way across time is
problematic when the network code cannot wait for the channel
code to be decoded before beginning its operations.

Theorem 3 also generalizes a variety of analytical and com-
putational tools for finding network capacities from networks of
noiseless point-to-point channels to networks of noisy point-to-
point channels. For example, the classical result that feedback
does not increase the capacity of a point-to-point channel can
now be proven in two ways. The first is the classical information
theoretic argument that shows that the receiver has no informa-
tion that is useful to the transmitter that the transmitter does not
already know. The second observes that the min-cut between
the transmitter and the receiver in the equivalent network is the
same with or without feedback; therefore feedback does not in-
crease capacity. While both proofs lead to the same well-known
result, the latter is easier to generalize. For example, since ca-
pacities are known for a variety of network coding problems,
we can immediately determine whether feedback increases the
achievable rate regions for a variety of connection types (e.g.,
multisource multicast, single-source nonoverlapping demands,
and single-source nonoverlapping plus multicast demands) in
networks of noisy point-to-point channels.

11While it is known that a noiseless bit pipe of a given throughput can emulate
any discrete memoryless channel of lesser capacity [20], it is not clear how to
apply these results in our context. First, they treat only finite-alphabet channels.
Further, direct application would require proving continuity of capacity in the
channel statistics. We prove the result directly, without application of [20].
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Theorem 3 also implies that the capacity of a network of
independent, memoryless, point-to-point channels equals the
capacity of any other network of independent, memoryless,
point-to-point channels that can be created by replacing each
channel by another channel of the same capacity. From the
perspective of capacity, a network of Gaussian channels is
no different from a corresponding network of binary erasure
channels.

VI. CENTRAL PROOFS

To prove Theorem 3, we first prove the continuity of
in for all .12 We begin with a definition of continuity.
For any and , let

be the worst-case -norm between a point
and its closest point . We say that is
continuous in for all if for any , there exists a

for which .

Lemma 4: Given a channel , let . Capacity
is continuous in for all .

Proof: By Lemma 1 it suffices to prove that is
continuous in . Fix any and .
For any and all sufficiently large there exists a

- solution for the -fold stacked network
. This solution can be run with the same error probability

on -fold stacked network provided

This is accomplished by operating solution un-
changed across the first copies of channel in and
sending the bits intended for transmission across

bit pipes of rate in across the bit pipes of
rate in ; here implies

, so the full transmission can be
delivered. If , then the rate of the
resulting code is

Since and are fixed, the difference

approaches 0 as grows and approaches 0. Since is arbi-
trary, the desired result follows.

Lemma 5 and Theorem 6, below, show that implies
and implies . Both results are proven by

showing that codes designed for one network can be operated
across the other network with asymptotically negligible error
probability. To operate a code designed for
across network , we employ channel coding to

12Continuity of the rate region at remains an open problem for most
networks [21], [22]. The subtle underlying question here is whether a number
of bits that grows sublinearly in the coding dimension can change the network
capacity.

make the noisy channel in emulate the noiseless bit pipe
in . To operate a code designed for across

network , we employ a channel emulator to make
the noiseless bit pipe in emulate the noisy channel in

. In both cases, the emulators are run across the layers of a
stacked network and not across time.

Lemma 5: Consider a pair of channels

where is the capacity
of . If , then .

Proof: To prove that is a lower bounding model for
, we must show that for any networks and

, . Applying Lemma 1,
we prove this result by proving that . Fix

. The argument that follows builds a sequence
of rate- solutions for stacked network and shows that the
error probability can be made arbitrarily small.

Step 1 – Choose stacked solution for : By The-
orem 2, there exists a sequence of stacked solutions ,
each of which uses the same single-layer solution in-
dependently in each layer of the stack, and for which

for all sufficiently large. Fix such a sequence
of codes. Let be the blocklength of (and therefore
the blocklength of for all ). Rather than separately
specifying the operations of the message channel codes and the
single-layer solution that together define the stacked solution,
we here use to denote their combined action as node

encoders and to denote their combined action
as node decoders for the stacked solution.

Step 2 – Choose channel code : Since
, there exists a sequence of channel codes

for channel with encoders , decoders
, and maximal error probability

approaching 0 as grows without bound. Fix such a sequence
of channel codes.

Step 3 – Build solution for : The solution
operates across -fold stacked network with the aid
of channel code , as shown in Fig. 9. At each time

, the channel code emulates uses of bit pipe
across the stacked network’s copies of channel . Let

and be the time- input and output of at node .
The node encoders for operate the node encoders from

as

where are the node’s prior stacked network out-
puts, channel decoded (if necessary) as

.
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Fig. 9. Operation of node 1 at time and node 2 at time in solutions (a) and (b) . We show the nodes at different times since the output
from node 1 at time cannot influence the encoder at node 2 until time (due to the causality constraint).

The resulting channel inputs are then channel encoded (if nec-
essary) as

if

if

before transmission. The node decoders for likewise op-
erate the node decoders from as

Step 4 – Bound the error probability for : An error
can occur if either the channel code decodes in error at one or
more time steps or the channel code decodes correctly in all

time steps but the code fails. If the channel code
decodes correctly at all times , then

the conditional probability of an error given is precisely
what it would have been for the original code. Let denote the
event that the channel code fails at time . We bound the error
probability as

Inequality follows from the union bound; follows from
the error probability bound for the channel code and from the
observation that
for all . Since and are positive, finite constants, and
decays to zero with increasing , this bound approaches 0 as

grows without bound.

Just as Lemma 5 shows that we can run a solution for
across with the help of a channel code, Theorem 6, below,

shows that we can run a solution for across using a
channel emulator to emulate channel across noiseless bit pipe

. The emulator resembles a lossy source code. Its encoder
maps each vector of channel inputs to a rate- binary de-
scription, which is transmitted across the noiseless bit pipe. The
emulator decoder then maps each binary description to a vector

of channel outputs. Together, the emulator encoder and
decoder map channel inputs to channel outputs.

While each instance of the emulator is deterministic, we
design the emulation code at random and take the expectation
over the random ensemble of codes. Showing that the resulting
expected error probability is small proves the existence of a
good instance of the emulation code. The probability that a
randomly chosen code maps channel input vector to
channel output vector is designed to approximate the
probability
that is mapped to in independent uses of the
channel. Since achieving good emulation performance for all
possible is difficult, our emulator design focuses
on approximating on the set of jointly typical
channel input–output pairs.

Theorem 6: Consider a pair of channels

where is the capacity of .
If , then .

Proof: To prove that is an upper bounding model for ,
we must show that for any and ,

. By Lemma 1, it suffices to show that
. Fix and . The argu-

ment that follows shows that for any sufficiently large there
exists a solution for -fold stacked network

. We first design a stacked solution for and a channel
emulator; each is designed independently at random, and then
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the two are combined. Good instances of both codes are chosen
jointly once both are in place.

Step 1 – Randomly design for : Apply the random
stacked solution design algorithm from the proof of Theorem 2
to design a sequence of rate- stacked solutions . By The-
orem 2, the expected probability of the union of all error events
is at most for all sufficiently large. Let be the block-
length of , which is fixed for all . By Lemma 7, for each

, the randomly designed stacked solution estab-
lishes an i.i.d. distribution
across the layers of the stack, where the distribution in
each layer is the time- distribution on single-layer network in-
puts and outputs for a single-layer solution used in each
layer of stacked solution ; both and are in-
dependent of . Let

be that distribution’s marginal on .
Under the random stacked solution design,

are i.i.d., and the probability that falls in the
jointly typical set for approaches 1 as

grows without bound. The definition of appears in
Appendix II. The parameter used in that definition varies
with . This is useful both because may vary
with and because emulation at one time affects the distri-
bution at future times. We denote the full vector of parame-
ters by . Lemma 8, which also appears in
Appendix II, shows that

(1)

for some constant that approaches zero as approaches
zero.

Step 2 – Randomly design channel emulators: For each
, we design a code to emulate

independent uses of channel across copies of bit pipe
. Code emulates under input distribution

. Mappings

are the emulator encoder and decoder, respectively. We design
the emulator decoder at random, drawing codewords

(2)

i.i.d. according to the marginal of distribution
. The encoder

is defined as

if

if s.t.
(3)

When there is more than one index for which
, the encoder design chooses

uniformly at random among them.
Any fixed instance of the emulator is a deterministic map-

ping; the conditional distribution on the emulator output given
the emulator input is an indicator function

The expected value of this distribution with respect to the distri-
bution on emulators imposed by our random design algorithm
is

(4)

Lemma 11 in Appendix II bounds the difference between the
channel distribution and the expected distribu-
tion as

(5)

for all . This result bounds the accuracy
with which the random ensemble of emulators approximates
the desired channel distribution when .
Here, , defined along with typical set in Appendix II,
approaches zero as approaches zero.

To bound the probability that under
operation of the randomly designed emulator , let

Using a proof similar to the proof of the rate-distortion theorem,
Lemma 12 in Appendix II shows

(6)

for all .
Note that the definitions of and depend

only on the single-layer solution in stacked solution
, and recall that that single-layer solution is not randomly

designed but deterministically chosen. Thus the distribution
, and the typical set defined for it, are fixed

over all random codes. As a result,
and . This explains the
absence of expectations around and
throughout. (See, for example, the right hand side of (6).)

Step 3 – Build solution for : Solution
operates across network with the aid of the em-
ulation codes ; is not a stacked so-
lution since the emulation codes code across the layers of the
stack. We begin with an informal code description. For each
node , the operation of node in is iden-
tical to its operation in . At node 1, solution ap-
plies the node encoder from followed by the emulator
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Fig. 10. Operation of node 1 at time and node 2 at time in solutions (a) and (b) . We show the nodes at different times since the stacked
network input from node 1 at time cannot influence the encoder at node 2 until time (due to the causality constraint).

encoder, which maps to a binary description to
be sent across the bit pipe. The node decoder at node 1 is un-
changed. At node 2, applies the emulator decoder to
map the bit-pipe output to a channel output before
applying the encoder and decoder from . Fig. 10 illustrates
these operations, which are defined formally below.

For each , node first channel codes its outgoing mes-
sages , , as

using the channel code chosen in the random code design of
Step 1. Let be the time- input and output of
at node . At each time , node applies its node
encoder as

Here, is the stacked network output decoded (if necessary)
using the randomly designed emulation decoder, giving

if

if .

Node applies (if necessary) the channel emulation encoder
before each transmission, giving

if
if .

At time , node applies the node- decoders from as

and then applies the channel decoders from to give

Step 4 – Bound the error probability for : The error
analysis begins with a characterization of error events. The def-
initions of error events rely on both expected probabilities re-
sulting from the operation of random solution on and
expected probabilities resulting from the operation of random
solution on . To avoid confusion, we use
for the former and for the latter.

For any fixed instance of code , define

(7)

to be the set of input–output pairs for channel at time for
which the conditional probability of an error in the operation
of on exceeds threshold ; we think of
as the “bad” set since it contains channel input–output pairs for
which the conditional probability of an error decays to zero sig-
nificantly more slowly than the expected rate of decay
derived for our random code design in Theorem 2.

We treat channel input–output pairs that are atypical or
fall in the “bad” set as error events. To bound the probability
that for some time , let

, and for let
be the set of all channel input–output pairs that do

not experience such an error in the first time steps; then
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and captures all error events due
to atypicality or “bad” channel input–output pairs. Note that

By the union bound, the expected probability of satisfies

and we bound the error probability of our solution as

(8)

(9)

(10)

The expectation captures the random code design, while cap-
tures the random message choice and random action of channel

.
Bounding each of the terms in this sum requires a character-

ization of the expected distribution achieved by randomly de-
signed solution . Recall from (18) in Appendix I that
the expected behavior of solution is characterized by dis-
tribution

(11)

Solution can be similarly characterized. In particular,
since the messages are again uniformly distributed and we em-
ploy the same stacked solution and channel codes, distributions

, , , , and remain
unchanged. The difference between and is the re-
placement of channel at time by the operation of the channel
emulator across noiseless bit-pipe . Thus at
time , solution replaces the channel distribution

by the emulator distribution .

Since and for each are all chosen inde-
pendently at random, the expected distribution imposed by the
randomly designed solution is

(12)

where

To bound (8) and (9), we first bound

by summing expected probability over all
vectors that satisfy

for . In taking this sum, we include the full

expression inside the expectation since the definition of
for each (and therefore the definition of for each ) depends
on the randomly chosen instance of the solution . Thus

(13)

for each . Here, follows from (12), em-
ploys the bound on the accuracy of our channel emulator from
(5), and the inequality in follows from summing over all

for rather than just
, . No expectation is required in since

is fixed for all random codes, as discussed above. The
given bound captures how the input distribution to node 1 at time

is affected by the replacement of the channel by its emulator
in all previous time steps.

We apply this result to bound (8) as
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(14)

Here, follows since the emulator observes only
the channel input ; follows from the independence of
the random solution and emulator designs; follows from (6);

follows since

follows from (13); and follows from (1).
To bound (9), recall from Theorem 2 that for all sufficiently

large the expected probability that solution decodes any
messages in error on network is bounded by . Thus

where follows from the definition of in (7). Thus the
expected probability of set on is

(15)

For solution on

(16)

Here, follows from (13); follows from (5); and fol-
lows from (15). An expectation is required in inequality
since the definition of relies on the randomly chosen so-
lution.

To bound (10), we sum over all
, for which and

for all . The resulting bound is

(17)

Here, ( ) follows from (12); ( ) follows from (5) and (11). In
( ), we remove the restriction
for , and we sum over all for , over all

, and over all ; the remaining sum is over

all for which and

. Then ( ) follows from (7) and the bound
.

Step 5 – Choose parameters: The final step is to show that
we can choose typical set parameters such
that for all sufficiently large. Since is
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fixed and finite, plugging (14), (16), and (17) into (8), (9), and
(10) shows that the expected error probability of goes
to zero provided

for all . Recall that constants and ,
which are defined in (19) and Lemma 8 in Appendix II, depend
only on distribution and the value . Each
goes to 0 as approaches 0. The following sequential choice
of yields the desired result. Set such that

.
Given , set such that

The resulting bound on the expected probability of the union of
all error events goes to zero as grows without bound since

(by the theorem assumption and
definition of capacity) and . Since the expected probability
of the union of all error events goes to zero as grows without
bound, there must exist a single instance of the code
that does at least as well.

Remark 3: It is interesting to specify the choice of param-
eters in Theorems 2 and 6 required to guarantee the existence
of a - solution for an arbitrary and

. Since we have there
exists an with . We choose in
Theorem 2 accordingly as .
Once is chosen, we choose and so that the condi-
tion is satisfied for a

- solution of blocklength . Note that for each
and each , is less than the

capacity of the channel imposed
by this solution, so . Fixing fixes distributions

. We next choose as specified above and design
channel emulator for sufficiently large. The
given blocklength- solution for the -fold stacked network

can be unraveled and run as a blocklength- solution on
the single-layer network as described in the first half of the
proof of Lemma 1.

VII. CONCLUSIONS

The equivalence tools introduced in this work suggest a
new path towards the construction of computational tools
for bounding the capacities of large networks. Unlike cut-set
strategies, which investigate networks in their entirety, the
approach here is to bound capacities of networks by bounding
the behaviors of component channels. We here demonstrate the

strategy when the network components are point-to-point chan-
nels. In that case, we present the first proof of the separation
between network and channel coding for general connection
types, demonstrating the equivalence between the capacity of
a network of noisy point-to-point channels and the capacity
of another network where each noisy channel is replaced by a
noiseless bit pipe of the same capacity. Part II applies the same
strategy to multiterminal channels, first deriving standards of
emulation accuracy under which a network of bit pipes is an
upper or lower bounding model for a multiterminal channel
and then applying those standards to derive bit-pipe models for
a variety of multiterminal channels. Using bounding networks
constructed from noiseless bit pipes allows us to apply available
computational tools for bounding network coding capacities to
networks constructed from noisy component channels.

APPENDIX I
LEMMA 7

Lemma 7: Under the random code design in the proof of
Theorem 2, for each time there exists a distribu-
tion independent of such that

the expectation is over the random channel code design.
Proof: The stacked solution design combines a

single-layer solution with a collection of channel
codes. The solution is fixed for all . The channel codes
are independently and randomly designed for each . Fix
and the instance of the channel codes. Then establishes
distribution

(18)

where is the uniform distribution on messages,
captures the operation of the message channel encoders,

describes the operation of the time- node en-
coders, is the network distribution, results
from the node decoders, and describes the operation of
the message channel decoders.13

Many of these distributions factor across the layers of the
stack. The messages are drawn independently and uniformly at
random, giving . Stacked solution
applies solution independently in each layer of the stack,
giving

13Any fixed code has deterministic encoders and decoders; thus
. For example,

equals 1 if and 0 otherwise.
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where and charac-
terize the node encoders and decoders for . The stacked
network definition sets . Thus

To calculate for each , we focus on
the marginal

Taking the expectation over the random channel code design
gives

The channel codeword for each is chosen independently and
uniformly at random, so is the
uniform distribution on , and

The resulting marginals are

where is the distribution on established by so-
lution when operated on messages uniformly distributed
on . This distribution is independent of , which gives the
desired result.

APPENDIX II
SUPPORTING MATERIALS FOR THE PROOF OF THEOREM 6

Let be a vector of positive constants,
and for each define

and

where is the entropy of , is
the entropy of , and is the en-
tropy of under .14 For each

, let

where

(19)

This infimum is shown to be well defined in the proof of
Lemma 8. Define set

where

We henceforth call the typical set. This definition restricts
attention to those typical channel inputs that are most
likely to yield jointly typical channel outputs. This restriction
is later useful for showing that the number of jointly typical
channel outputs for each typical channel input is roughly the
same. Such a result could be obtained more directly for finite-al-
phabet channels using strong typicality; we here treat the gen-
eral case. Lemma 8, below, proves that approaches
zero as grows without bound.

Lemma 8: Let be
drawn i.i.d. according to distribution on alphabet

. Then there exists a constant for
which

for all sufficiently large. Constant approaches 0 as
approaches 0.

14We use notation for both discrete and differential entropy and assume
that .
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Proof: The result follows from Chernoff’s bound,
which we apply to averages of i.i.d. random variables. Cher-
noff’s bound states that for any i.i.d. random variables

,

where and for
all with equality if and only if (see, for
example, [23, pp. 482–484]). Note that
approaches 0 as approaches .

We begin by applying the Chernoff bound to the following
sequence of random variables

We then negate the sequence and apply the Chernoff bound
again. Combining these results with the union bound gives

for some and all sufficiently large. Likewise, for any
,

for some and all sufficiently large. Since
grows without bound as increases,

constants and can be made arbitrarily large by choosing
large enough. This implies that the infimum in the definition

of ((19), above) is well-defined.
Applying these bounds gives

where applies the union bound and the definition of ,
and follows from our first Chernoff bound and the definition
of in (19). Let

Then, by the definition of (restricted) typical set ,

where follows since . To bound
, note that

where follows from the definition of , follows from
the non-negativity of probability since we restrict the terms of
the summation, and applies the definition of . Thus

, which gives the desired result.

Lemma 11, which follows, bounds the expected emu-
lation distribution resulting from the
random ensemble of emulators . (Recall that

is defined in (4) in Section VI.) Lemmas 9
and 10 are intermediate steps used in the proof of Lemma 11.

For any , define functions
and as

if
otherwise

(20)

Lemma 9 characterizes as a function of the proba-
bility that a single codeword drawn at random is jointly
typical with ; specifically, the lemma shows that
is the expected probability that is mapped to given that there
is at least one codeword in the codebook that is typical with .
Lemma 10 then bounds for all satisfying the conditions
of . Our restriction in the typical set definition is useful
here.

Lemma 9: Let be the random emulator de-
fined in (2) and (3). Then for any ,

Proof: Recall that is the probability that a single ran-
domly drawn codeword satisfies .
Using the given random code design, for any ,
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Here, is the number of codewords that are jointly typical with
, is the number of those codewords that equal , and term

follows from the uniform distribution over jointly typical
codewords in the encoder design. In the second equality,

and . Thus

Lemma 10: Given , if and
, then

for all sufficiently large.
Proof: For any satisfying the given constraints, we

first derive a bound on the number of values for which
. This is obtained by drawing a random variable

according to conditional distribution
and showing that with probability approaching
1. Since all that are jointly typical with are approximately
equally probable, this probability bound leads to a bound on
the number of vectors that are jointly typical with and then
to a bound on the desired probability.

By the lemma assumptions,

which approaches 0 as grows without bound. Thus for suf-
ficiently large, . Let

. Then

since implies

Thus

which we use to bound as

Lemma 11: For all ,

Proof: By Lemmas 9 and 10 and the usual bounds on the
probabilities of typical elements

Lemma 12 bounds the conditional probability that
is not jointly typical when the conditional distribution on
given is the distribution resulting from the ran-
domly designed emulator .

Lemma 12: For all ,

Proof: If or , then

by definition of , and the result is immediate. Otherwise,
implies that none of the codewords of

is jointly typical with . In this case, using definition (20) and
following the proof of the rate-distortion theorem (cf. [18, Steps
10.93–10.102]),
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Here, follows from [18, Lemma
10.5.3] and the bound

for all , which follows from the definition of the
typical set.
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